Wood for Good Lifecycle Database

Medium Density Fi	ibreboard (MDF)
Key Information	
General Process Description	1 m ² of medium density fibreboard based on the UK consumption mix.
Reference Flow/Declared Unit	1 m ² of 12 mm-thick medium density fibreboard, 6.8% moisture content (dry basis), average product density of 737kg/m ³ .
Reference Year	2013
Methodological Approa	ach
	This generic dataset has been developed with reference to CEN/TR 15941:2010 Environmental product declarations — Methodology for selection and use of generic data and has made use of data from existing databases and EPD, compensated with data from UK industry and national statistics for the specific situation related to UK consumption of timber products. With regard to methodology, the datasets are in line with the core Product Category Rules given in EN 15804+A1: 2013 Environmental product declarations — Core rules for the product category of construction products, and further detailed in FprEN 16485:2013 Round and sawn timber — Environmental Product Declarations — Product category rules for wood and wood-based products for use in construction and the draft EN 16449, Wood and wood-based products — Calculation of sequestration of atmospheric carbon dioxide. The generic dataset is intended for use as upstream data for UK consumed timber products within EPDs and building level LCA assessments to EN 15978:2011 Assessment of environmental performance of buildings — Calculation method.
	Madium danaitu fibrahaard ia manufacturad firam a raiu of interrativ
	produced and externally sourced wood fibres held together with wax and adhesive. Wood arrives at the manufacturing site either pre-chipped (both

produced and externally sourced wood fibres held together with wax and adhesive. Wood arrives at the manufacturing site either pre-chipped (both pre- and post-consumer woodchips can be used) or as logs that are chipped on site. The woodchips are squeezed through a screw-feeder which compresses and softens the wood, while also removing water. The wood strands are then sent into a steam digester which removes fibres from the wood. The uniform wood pulp that emerges from the digester is mixed with wax and adhesive and formed into mats which are dried and pressed to form the finished MDF product which is cut to size and sanded prior to distribution.

For this study, the modelled product is a 12 mm-thick MDF board. The urea

() Wood for Good Lifecycle Database

formaldehyde adhesive and paraffin wax account for 13.5% of the total mass of the product. The moisture content of the board is assumed to be 6.8%. For MDF of a different thickness, impacts can be estimated by assuming that the impacts will scale linearly with thickness.

Data from the United Nations Economic Commission for Europe's (UNECE) Timber Forecast Questionnaire were used to determine the split between UK produced MDF and imported MDF consumed in the UK [UNECE 2013]. In 2012 UK producers accounted for 58.5% of MDF consumed in the UK. Research compiled by Timbertrends on wood imports into the UK for 2012 was used to determine the countries of origin for imported MDF [Timbertrends 2012]. For reasons of practicality only countries representing a cumulative total of more than 95% were included in the MDF import mix. These figures were scaled up to 100% to account for production in the countries below the 5% cut-off (see Table). The nine countries listed account for 95.0% of total imports, with another 18 countries accounting for the remaining 5.0%.

Origin/Species	Percentage of Consumption Mix
UK Produced MDF	58.5%
Imported MDF	41.5%
Of which:	
Ireland	19.9%
Belgium	5.8%
Germany	5.7%
Spain	5.1%
Latvia	1.9%
Poland	1.4%
Norway	0.7%
Austria	0.6%
Netherlands	0.5%

MDF is assumed to be manufactured from a mix of virgin woodchips and sawn logs, with used wood used for energy generation at the production site [Rüter 2012]. For virgin woodchips forestry practices and sawmill assumptions were the same as those used for the modelling of "Fresh sawn softwood" [Wood First 2014], with energy grids adapted to reflect the country of production.

MDF manufacturing is based on information compiled by PE International and represents production in Germany [Rüter 2012]. There are not expected to be significant technological differences between MDF production in Germany and other European countries, however, the energy mix, which is likely to have a significant impact on results, has been adapted to reflect the

Wood for Good Lifecycle Database

specific electricity and fuel mix in each production country. The manufacturing steps included are: Chipping/sorting, screw feeding, pulp production, mixing with resin and adhesive, hot pressing and finishing (sawing, trimming and sanding).

Transport to customer from UK mills was 130 km based on data on the transport of timber construction products [DfT 2005]. Transport to UK customers for imported products was calculated based on:

- Truck transport from one of the country's largest sawmills listed in the online Sawmill Database [Sawmill DB 2014] to a large national port or where no sawmill is listed, from a heavily forested region in the country to a large national port.
- Sea transport from the designated port to Hull, Felixstowe, Southampton or Liverpool (dependent on country of origin)
- Transport of 130 km from port to customer [DfT 2005]

Using this method, transport of imported MDF was estimated to be 532 km by sea and 345 km by road.

Product use and maintenance have not been included due to the wide range of potential uses and consequently the high level of uncertainty surrounding this stage of the lifecycle.

End-of-life data are provided for three scenarios: 100% of wood waste to recycling, 100% of wood waste to incineration with energy recovery and 100% of wood waste to landfill. Wood transport distances to landfill and recycling of 25km and 21km were taken from survey data related to construction end of life practices in the UK compiled by BRE [BRE 2013]. Transport to wood energy recovery plants was estimated to be 46km based on average transport to one of an estimated 25 suitable biomass or waste-to-energy plants.

The composition of the waste (water content, adhesive content) is taken into account in the end-of-life modelling to reflect the characteristics of the waste in each scenario, with adhesives modelled as inert in landfill.

Landfill gas production is modelled based on the MELMod model for landfill emissions in the UK. The values used in this project take into account improvements to the assumptions regarding organic carbon degradation suggested by Eunomia as a result of their review of MELMod for DEFRA [Eunomia 2011]. Using typical values for cellulose, hemicellulose and lignin, an organic carbon conversion of 38.5% has been calculated. The landfill gas is assumed to have a 50:50 methane to carbon dioxide ratio by volume. The

The leading authority on wood

landfill is assumed to be a modern "Type 3" landfill (large modern landfill with comprehensive gas collection) with a landfill gas extraction efficiency of 50%.

Wood waste sent for recycling is assumed to be used as woodchips and is assigned credits related to the avoided production of woodchips from virgin softwood. The adhesive component is assumed to be lost and it is acknowledged that this represents a "best case" as at present little MDF is recycled in the UK.

() Wood for Good Lifecycle Database

Environmental Parameters Derived from the LCA

Production & Distribution (Cradle-to-Site)

Parameters describing environmental impacts	Units	Production (A1-A3)	Distribution and Installation (A4-A5)
Global Warming Potential	kg CO2 eq.	-6.99	0.175
Ozone Depletion Potential	kg CFC11 eq.	3.49E-10	4.04E-13
Acidification Potential	kg SO2 eq.	0.0199	0.00131
Eutrophication Potential	kg PO4 eq.	0.00410	0.000191
Photochemical Ozone Creation Potential	kg Ethene eq.	0.00384	-0.00012
Abiotic Depletion Potential (Elements)	kg Sb eq.	6.72E-07	3.71E-09
Abiotic Depletion Potential (Fossil)	MJ	59.4	2.33
Parameters describing primary energy	Units	Production (A1-A3)	Distribution and Installation (A4-A5)
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value	61.9	0.0307
Use of renewable primary energy resources used as raw materials	MJ, net calorific value	138	0
Total use of renewable primary energy resources	MJ, net calorific value	200	0.0307
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ, net calorific value	66.0	2.33
Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value	0	0
Total use of non-renewable primary energy resources	MJ, net calorific value	66.0	2.33
Use of secondary material	kg	0	0
Use of renewable secondary fuels	MJ, net calorific value	0	0
Use of non-renewable secondary fuels	MJ, net calorific value	0	0
Net use of fresh water	m ³	0.0253	2.83E-05
Other environmental information describing waste categories	Units	Production (A1-A3)	Distribution and Installation (A4-A5)
Hazardous waste disposed	kg	0.0199	0.00131
Non-hazardous waste disposed	kg	0.00384	-0.00012
Radioactive waste disposed	kg	6.72E-07	3.71E-09
Other environmental information describing output flows	Units	Production (A1-A3)	Distribution and Installation (A4-A5)
Components for re-use	kg	0	0
Materials for recycling	kg	0	0
Materials for energy recovery	kg	0	0
Exported energy	MJ per energy	0	0

() Wood for Good Lifecycle Database

Environmental Parameters Derived from the LCA

End-of-Life

Units	100% Recycling		100% Energy		100% Landfill	
	Recovery					
	End-of-Life	Material and	End-of-Life	Material and	End-of-Life	Material and
	Processing	Energy	Processing	Energy	Processing	Energy
	(C1-C4)	Credits	(C1-C4)	Credits	(C1-C4)	Credits
		(D)		(D)		(D)
kg CO2 eq.	13.7	-0.134	16.7	-11.5	15.6	-1.32
kg CFC11 eq.	4.11E-12	-3.60E-12	1.29E-11	-4.70E-10	5.90E-12	-7.90E-11
kg SO2 eq.	0.000872	-0.000670	0.0141	-0.0286	0.0253	-0.00454
kg PO4 eq.	0.000142	-0.000120	0.00269	-0.00257	0.00172	-0.000380
kg Ethene	4 10E-05	-3 30F-05	0 00137	-0.00180	0 00382	-0.000260
eq.	4.102 05	5.50L 05	0.00137	0.00100	0.00502	0.000200
kg Sb eq.	1 2/IE-08	-2 6E-09	2 05F-07	-2 7E-07	1 11E-07	-3 8F-08
	1.246-00	-2.01-05	2.051-07	-2.76-07	1.111-07	-3.01-00
MJ	4.81	-1.74	6.28	-162	11.6	-16.9
	Units kg CO2 eq. kg CFC11 eq. kg SO2 eq. kg PO4 eq. kg Ethene eq. kg Sb eq. MJ	Units100% REnd-of-Life Processing (C1-C4)kg CO2 eq.kg CFC11 eq.kg SO2 eq.0.000872kg PO4 eq.0.000142kg Ethene eq.kg Sb eq.1.24E-08MJ4.81	Units100% RecyclingEnd-of-Life Processing (C1-C4)Material and Energy Credits (D)kg CO2 eq13.7-0.134kg CFC11 eq4.11E-12-3.60E-12kg SO2 eq0.000872-0.000670kg PO4 eq0.000142-0.000120kg Ethene eq.4.10E-05-3.30E-05kg Sb eq.1.24E-08-2.6E-09MJ4.81-1.74	Units 100% Recycling 100% Recycling End-of-Life Material and End-of-Life Processing Energy Processing (C1-C4) Energy Processing (C1-C4) Credits Processing kg C02 eq. 13.7 -0.134 16.7 kg CFC11 eq. 4.11E-12 -3.60E-12 1.29E-11 kg S02 eq. 0.000872 -0.000670 0.0141 kg P04 eq. 0.000142 -0.000120 0.00269 kg Ethene 4.10E-05 -3.30E-05 0.00137 eq. 1.24E-08 -2.6E-09 2.05E-07 MJ 4.81 -1.74 6.28	Units 100% Recycling 100% Energy Image: Record of the stress o	Units 100% Recycling 100% Energy End-of-Life Material and End-of-Life Processing Energy <the< th=""></the<>

Parameters describing	Units	100% R	100% Recycling		100% Energy		100% Landfill	
environmental impacts				Reco	Recovery			
		End-of-Life Processing (C1-C4)	Material and Energy Credits (D)	End-of-Life Processing (C1-C4)	Material and Energy Credits (D)	End-of-Life Processing (C1-C4)	Material and Energy Credits (D)	
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value	0.0886	-0.0561	138	-7.22	0.376	-1.22	
Use of renewable primary energy resources used as raw materials	MJ, net calorific value	-138	0	-138	0	0	0	
Total use of renewable primary energy resources	MJ, net calorific value	-138	-0.0561	0.164	-7.22	0.376	-1.22	
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ, net calorific value	5.03	-1.94	6.64	-189	11.9	-21.5	
Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value	0	0	0	0	0	0	
Total use of non-renewable primary energy resources	MJ, net calorific value	5.03	-1.94	6.64	-189	11.9	-21.5	
Use of secondary material	kg	0	8.85*	0	0	0	0	
Use of renewable secondary fuels	MJ, net calorific value	0	0	0	0	0	0	
Use of non-renewable secondary fuels	MJ, net calorific value	0	0	0	0	0	0	
Net use of fresh water	m ³	-0.000320	-0.000220	0.0161	-0.0300	-0.00781	-0.00506	

terprise The

Nood for Good Lifecycle Database

Parameters describing	Units	100% Recycling		100% Energy		100% Landfill	
environmental impacts	•	200/01					
		End-of-Life	Material and	End-of-Life	Material and	End-of-Life	Material and
		Processing	Energy	Processing	Energy	Processing	Energy
		(C1-C4)	Credits	(C1-C4)	Credits	(C1-C4)	Credits
			(D)		(D)		(D)
Hazardous waste disposed	kg	0.000872	-0.000670	0.0141	-0.0286	0.0253	-0.00454
Non-hazardous waste disposed	kg	4.10E-05	-3.30E-05	0.00137	-0.00180	0.00382	-0.000260
Radioactive waste disposed	kg	1.24E-08	-2.60E-09	2.05E-07	-2.70E-07	1.11E-07	-3.80E-08
Parameters describing	Units	s 100% Recycling 100% Energy 100%				100% L	andfill
environmental impacts		Recovery					
		End-of-Life	Material and	End-of-Life	Material and	End-of-Life	Material and
		Processing	Energy	Processing	Energy	Processing	Energy
		(C1-C4)	Credits	(C1-C4)	Credit:s	(C1-C4)	Credits
			(D)		(D)		(D)
Components for re-use	kg	0	0	0	0	0	0
Materials for recycling	kg	8.85	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0
Exported energy from Electricity	MJ	0	0	50.2	0	8.53	0
Exported energy from Thermal	MJ	0	0	60.2	0	0	0
E la la versión		0		0.012	5	0	0

Energy

*Represents use of secondary material in next product system

References	
BRE 2013	Anderson, J., Adams, K. and Shiers, D., 2013. Personal communication: Survey of UK Construction Waste Sites. BRE, Watford, UK
DfT 2005	Department for Transport, 2005. Continuous Survey of Road Goods Transport. Department for Transport, London, UK.
Eunomia 2011	Eunomia Research & Consulting 2011. <i>Inventory Improvement Project</i> – <i>UK Landfill Methane Emissions Model: Final Report to DEFRA.</i> Eunomia Research and Consulting Ltd., Bristol, UK.
Rüter 2012	Rüter, S. and Diederichs, S. <i>Ökobilanz-Basisdaten für Bauprodukte aus</i> <i>Holz</i> . Johann Heinrich von Thünen Institute, Braunschweig, Germany
Sawmill DB 2014	The Sawmill Database. <u>www.sawmilldatabase.com</u> , last accessed February 2014.
Timbertrends 2012	Timbertrends, 2012. <i>Timber Products - Imports and Exports</i> . Statistics compiled by Timbertrends for 2012 production. Timbertrends, Alicante, Spain
UNECE 2013	UNECE, 2013. UNECE Timber Forecast Questionnaire (Roundwood). UNECE, Geneva, Switzerland.
Wood First 2014	PE International and Wood For Good. <i>Fresh Sawn Softwood</i> . Timber Trade Federation, London, UK

